Spark的RDD检查点实现分析

Spark的RDD执行完成之后会保存检查点,便于当整个作业运行失败重新运行时候,从检查点恢复之前已经运行成功的RDD结果,这样就会大大减少重新计算的成本,提高任务恢复效率和执行效率,节省Spark各个计算节点的资源。

2016-05-26 10:30:20

阅读数 16050

评论数 5

Hadoop2.6.0运行mapreduce之推断(speculative)执行(下)

前言在《Hadoop2.6.0运行mapreduce之推断(speculative)执行(上)》一文中对推断执行技术的背景进行了介绍,并且在Hadoop集群上做了一些测试以验证mapreduce框架的推断执行。最后还从源码分析的角度解读了DefaultSpeculator的初始化和启动过程,其中涉...

2016-05-19 10:00:07

阅读数 10238

评论数 0

Hadoop2.6.0运行mapreduce之推断(speculative)执行(上)

前言当一个应用向YARN集群提交作业后,此作业的多个任务由于负载不均衡、资源分布不均等原因都会导致各个任务运行完成的时间不一致,甚至会出现一个任务明显慢于同一作业的其它任务的情况。如果对这种情况不加优化,最慢的任务最终会拖慢整个作业的整体执行进度。好在mapreduce框架提供了任务推断执行机制,...

2016-05-12 14:39:44

阅读数 21731

评论数 0

Hadoop2.6.0运行mapreduce之Uber模式验证

在有些情况下,运行于Hadoop集群上的一些mapreduce作业本身的数据量并不是很大,如果此时的任务分片很多,那么为每个map任务或者reduce任务频繁创建Container,势必会增加Hadoop集群的资源消耗,并且因为创建分配Container本身的开销,还会增加这些任务的运行时延。如果...

2016-05-05 14:55:38

阅读数 23997

评论数 2

提示
确定要删除当前文章?
取消 删除