深入理解Spark RDD——RDD信息对象

RDDInfo用于描述RDD的信息,RDDInfo提供的信息如下: id:RDD的id。 name:RDD的名称。 numPartitions:RDD的分区数量。 storageLevel:RDD的存储级别(即StorageLevel)。 parentIds:RDD的父亲RDD的id序列...

2019-08-16 11:20:53

阅读数 1732

评论数 0

深入理解Spark RDD——RDD分区计算器Partitioner

在《深入理解Spark RDD——RDD依赖(构建DAG的关键)》一文,详细描述了RDD的宽窄依赖。RDD之间的依赖关系如果是Shuffle依赖,那么上游RDD该如何确定每个分区的输出将交由下游RDD的哪些分区呢?或者下游RDD的各个分区将具体依赖于上游RDD的哪些分区呢?Spark提供了分区计算...

2019-08-16 11:14:50

阅读数 1004

评论数 0

深入理解Spark RDD——RDD依赖(构建DAG的关键)

在《深入理解Spark RDD——为什么需要RDD?》一文我们解释了为什么需要RDD,并且在《深入理解Spark RDD——RDD实现的初次分析》一文对RDD进行了基本的分析,本文将继续对RDD的依赖实现进行分析。正是由于RDD之间具有依赖关系,才能进而转换为调度中的DAG。 DAG中的各个RD...

2019-08-12 15:31:53

阅读数 692

评论数 1

深入理解Spark RDD——RDD实现的初次分析

RDD(Resilient Distributed Datasets,弹性分布式数据集)代表可并行操作元素的不可变分区集合。对于Spark的初学者来说,这个概念会十分陌生。即便是对于一些有Spark使用经验的人,要想说清楚什么是RDD,以及为什么需要RDD还是一件比较困难的事情。在《深入理解Spa...

2019-06-21 09:49:19

阅读数 565

评论数 0

深入理解Spark RDD——为什么需要RDD?

RDD(Resilient Distributed Datasets,弹性分布式数据集)代表可并行操作元素的不可变分区集合。对于Spark的初学者来说,这个概念会十分陌生。即便是对于一些有Spark使用经验的人,要想说清楚什么是RDD,以及为什么需要RDD还是一件比较困难的事情。本文首先解释第二个...

2019-06-11 10:00:25

阅读数 570

评论数 0

累计三年,断断续续的管理经验

在写标题的时候,本来要写成《累计三年,断断续续的项目管理经验》。后来想想,以我对管理的认识和感悟,管理好一个项目真的不是只管理项目这么简单。 何为断断续续?是因为这四年的管理经验不是连续的,分为了三段而已。2009年,在一家传统软件公司第一次担任了项目组长,这半年经验是伴随着我的离职而结束...

2019-06-03 10:59:15

阅读数 2733

评论数 15

Spark2.1.0——广播管理器BroadcastManager

BroadcastManager用于将配置信息和序列化后的RDD、Job以及ShuffleDependency等信息在本地存储。如果为了容灾,也会复制到其他节点上。创建BroadcastManager的代码实现如下。 val broadcastManager = new BroadcastMa...

2019-04-28 10:25:32

阅读数 1287

评论数 0

累计三年,断断续续的管理经验

累计三年,断断续续的管理经验序言一、融入二、豁达三、担当四、勿好为人师五、人尽其能六、谦卑七、平等互信八、员工激励结尾 序言 在写标题的时候,本来要写成《累计三年,断断续续的项目管理经验》。后来想想,以我对管理的认识和感悟,管理好一个项目真的不是只管理项目这么简单。 何为断断续续,是因为这四年的管...

2019-04-09 16:18:38

阅读数 383

评论数 0

Spark2.1.0——存储体系概述

本书在5.7节曾介绍过存储体系的创建,那时只为帮助读者了解SparkEnv,现在是时候对Spark的存储体系进行详细的分析了。简单来讲,Spark存储体系是各个Driver、Executor实例中的BlockManager所组成的。但是从一个整体出发,把各个节点的BlockManager看成存储体...

2019-04-09 15:49:38

阅读数 17646

评论数 0

Spark常见故障诊断(一)

本人维护的Spark主要运行在三个Hadoop集群上,此外还有其他一些小集群或者隐私集群。这些机器加起来有三万台左右。目前运维的Spark主要有Spark2.3和Spark1.6两个版本。用户在使用的过程中难免会发生各种各样的问题,为了对经验进行沉淀,也为了给Spark用户提供一些借鉴,这里将对各...

2019-04-01 09:29:18

阅读数 1653

评论数 4

Spark2.1.0——Spark环境更新

阅读提示:本文是对SparkContext中对用户通过--jars(或spark.jars)和--files(或spark.files)参数添加的外部资源进行的分析。 用户提交任务时往往需要添加额外的jar包或其它文件,用户任务的执行将依赖这些文件。这些文件该如何指定?任务在各个节点上运行时又是...

2018-12-27 11:56:35

阅读数 588

评论数 4

Spark2.1.0——ContextCleaner的工作原理分析

ContextCleaner是SparkContext中的组件之一。ContextCleaner用于清理那些超出应用范围的RDD、Shuffle对应的map任务状态、Shuffle元数据、Broadcast对象以及RDD的Checkpoint数据。 创建ContextCleaner 创建Con...

2018-12-17 09:54:32

阅读数 5684

评论数 0

Spark2.1.0——Executor动态分配的实现原理

         ExecutorAllocationManager的作用已在《Spark2.1.0——SparkContext概述》一文有过介绍,更为准确地说,ExecutorAllocationManager是基于工作负载动态分配和删除Executor的代理。简单讲,ExecutorAlloc...

2018-12-10 09:43:15

阅读数 6542

评论数 2

Spark2.1.0——创建SparkUI的分析

阅读建议:阅读本文前,最好先阅读《Spark2.1.0——SparkUI的实现》和《Spark2.1.0——WebUI框架体系》。          在SparkContext的初始化过程中,会创建SparkUI。有了对WebUI的总体认识,现在是时候了解SparkContext是如何构造Spa...

2018-12-03 09:47:25

阅读数 615

评论数 0

Spark2.1.0——WebUI框架体系

阅读建议:阅读本文前最好先阅读《Spark2.1.0——SparkUI的实现》一文。          Spark UI构建在WebUI的框架体系之上,因此应当首先了解WebUI。WebUI定义了一种Web界面展现的框架,并提供返回Json格式数据的Web服务。WebUI用于展示一组标签页,We...

2018-11-20 09:53:34

阅读数 1109

评论数 2

Spark2.1.0——SparkUI的实现

任何系统都需要提供监控功能,否则在运行期间发生一些异常时,我们将会束手无策。也许有人说,可以增加日志来解决这个问题。日志只能解决你的程序逻辑在运行期的监控,进而发现Bug,以及提供对业务有帮助的调试信息。当你的JVM进程奔溃或者程序响应速度很慢时,这些日志将毫无用处。好在JVM提供了jstat、j...

2018-11-20 09:53:05

阅读数 3093

评论数 9

Spark2.1.0——SparkContext初始化之Spark环境的创建

阅读指导:在《Spark2.1.0——SparkContext概述》一文中,曾经简单介绍了SparkEnv。本节内容将详细介绍SparkEnv的创建过程。          在Spark中,凡是需要执行任务的地方就需要SparkEnv。在生产环境中,SparkEnv往往运行于不同节点的Execu...

2018-11-16 09:48:37

阅读数 457

评论数 0

Spark2.1.0——SparkContext概述

Spark应用程序的提交离不开Spark Driver,后者是驱动应用程序在Spark集群上执行的原动力。了解Spark Driver的初始化,有助于读者理解Spark应用程序与Spark Driver的关系。 Spark Driver的初始化始终围绕着SparkContext的初始化。Spar...

2018-11-12 10:07:23

阅读数 1404

评论数 0

浅谈——程序员的自我革命

        在程序员这条道路上走过了十一年,即将迎来第十二个年头。之后是否是一个新的轮回?十一年前,从高校毕业后去哪里是当时首要考虑的问题。早在大二第二学期时就没有了要考研的打算,经常翘课回到宿舍鼓捣各种计算机软件,还记得当时最感兴趣的就是3DsMax和Flash了。这两款软件在那时风靡全球,...

2018-10-29 10:17:42

阅读数 5405

评论数 34

深入浅出Spark2.1.0度量系统——Sink继承体系

阅读提示:阅读本文前,最好请阅读《Spark2.1.0——深入浅出度量系统》和《深入浅出Spark2.1.0度量系统——Source继承体系》。          Source准备好度量数据后,我们就需要考虑如何输出和使用的问题。这里介绍一些常见的度量输出方式:阿里数据部门采用的一种度量使用方式...

2018-10-09 19:06:59

阅读数 1608

评论数 9

提示
确定要删除当前文章?
取消 删除